
ABSTRACT

 This paper proposes a frequency method to esti-
mate the state open or closed of eye and mouth and to detect 
associated motion events such as blinking and yawning. 
The context of that work is the detection of hypovigilence 
state of a user such as a driver, a pilot ...  In [1] we pro-
posed a method for motion detection and estimation which 
is based on the processing achieved by the human visual 
system. The motion analysis algorithm the filtering step oc-
curring at the retina level and the analysis done at the visual 
cortex level. This method is used to estimate the motion of 
eye and mouth : blinking are related to fast vertical motion 
of the eyelid and yawning is related to large vertical mouth 
opening.  The detection of the open or closed state of the 
feature is based on the analysis of the total energy of the 
image at the output of  the retina filter: this energy is higher 
for open features. The absolute level of energy associated 
to a specific state being different from a person to another 
and for different illumination conditions, the energy level 
associated to each state open or closed is adaptive and is 
updated each time a motion event (blinking or yawning) is 
detected.
 No constraint about motion is required. The  sys-
tem is working in real time and under all type of lighting 
conditions since the retina filtering is able to cope with il-
lumination variations. This allows to estimate blinking and 
yawning frequencies which are clues of hypovigilance.

I. Introduction

 The aim of the presented work is the development 
of a real time algorithm for hypovigilence analysis. The de-
gree of vigilance of a user can be related to the state open 
or closed of his eyes and mouth and to the frequency of his 
blinkings and yawnings.
 Work about eye blinks detection is generally based 
on temporal image derivative (for motion detection) fol-
lowed by image binarization analysis [2]. Also, feature 

point tracking on eyes and mouth is used to detect open / 
closed state and motion [3]. All these methods are based on 
spatial analysis of the eye/mouth region, they are sensitive 
to image noise and generally require a sufficient number 
of pixels to be accurate. Moreover, these methods often re-
quire morphological operations to avoid false blink detec-
tions generated by global head motion. Other methods can 
be used such as one based on «second order change» [4] but 
they always need binarization and thresholding, the choice 
of the threshold being of critical influence on the results.
 Work on mouth shape detection is generally based 
on lips segmentation: work with lip models such as [5] use 
color and edge information but these methods are sensitive 
to lighting and contrast conditions. Other methods such as  
parametric curves [6] has been studied. Recently, statisti-
cal model approaches such as active shape and appearance 
models for example [7, 8] have been proposed and give ac-
curate results for lips segmentations. Nevertheless all these 
methods cannot give information on the mouth state. In 
the case of mouth motion detection, lips segmentation or 
feature point tracking  [9] can be used but these methods 
require much processing power and yield to a mouth shape 
estimation rather than yawnings detection.
 In this paper, we use the spectral analysis method 
described in [1] that will allow the detection of eye and 
mouth states and blink/yawning  with the same method. It 
involves a spatio-temporal filter modelling the human ret-
ina and dedicated to the detection of motion stimulus. It is 
used to estimate the motion of eye and mouth: blinking are 
related to fast vertical motion of the eyelid and yawning is 
related to large vertical mouth opening. The detection of the 
open or closed state of the feature is based on the analysis of 
the total energy at the output of  the retina filter : this energy 
is higher for open features. In section 2 the general principle 
of the motion estimation method is explained and the prop-
erties of the motion estimator are given (see [1] for more 
details). . . Section 3 describes the proposed method to de-
tect eye and mouth  motions events (blinks and yawnings)  
and section 4 describes how to detect the open or closed 
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feature state which is associated to an adaptive updating of 
the related level of energy of the image spectrum. Section 5 
presents some results.
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II. Motion estimator based on the human vi-
sual system

Figure 1 gives a general overview of the algorithm. It is 
made of two step : the retina filtering and the visual cortex 
processing.

II.1 Retina Filtering

 The processing at the retina level consists in an 
efficient spatiotemporal filtering  made of two stages [10] : 
 -  at the Outer Plexiform Layer (OPL), all the treat-
ments are modelled by a non separable spatio-temporal fil-
ter (see Figure 2), its transfer function is  :
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ri, Ri are resistances and Ci are capacities that create the 
spatio-temporal effect. It models the filter generated by the 
synaptic network of the photoreceptors and horizontal cells 
of the retina. 
This filter has a band pass spatial effect in low temporal 
frequencies which is responsible for contours enhancement. 
It has a wide band pass temporal effect for low spatial fre-
quencies which smooths illumination variations. It has a 
low pass effect for high temporal frequencies and a low 
pass tendency for high spatial frequencies that minimizes 
spatio temporal noise.
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 - at the Inner Plexiform Level (IPL), the process is 
dedicated to the detection of moving stimulus. This process 
is modelled by a temporal derivation operator [11]. As a 
consequence, this filter enhances moving contours and re-
moves static ones. The amplitude of the contours response 
at the output of the IPL depends on the contours orientation 
w.r.t. the motion direction (the optimal case are contours 
perpendicular to the motion direction) and it depends on the 
motion amplitude.
 Figure 3 illustrates the effect of the retina filtering 
on an eye motion sequence in which the eye is closing. The 
OPL filter enhances all contours, attenuates the low spa-
tial frequencies, and minimizes spatio temporal noise (note 
that the lateral illumination variation is cancelled). The IPL 
filter attenuates static contours and enhances only moving 
ones (especially the contour of the eyelid which is perpen-
dicular to the motion direction). As a result, the spectrum 
of the IPL output only reports energy corresponding to the 
contours involved in the movement. 
An other advantage of the retina filter compared with a 
cascade of classic band pass filters is that process can be 
achieved in real time [1]. 
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II.2 FFT in log polar domain and spectrum 
analysis

 It was demonstrated in [1] that the FFT in the log 
polar domain of the IPL filter output allows an easy estima-
tion of the motion direction. We use this property to extract 
vertical motions: the detection of motion direction is based 
on the analysis of the energy of the retina filtered image. We 
distinguish:
 The global energy of the spectrum which is rep-
resentative of the amplitude of the motion. In particular, this 
energy is minimum or null when no motion occurs.
 The analysis of the same energy in the log-polar 
domain which exhibits maximum values for the contours 
perpendicular to the motion. Indeed the moving contours 
perpendicular to the motion direction are enhanced. This 



allows to estimate the motion direction. Eye blinking and 
mouth yawning are related to vertical motions. In order 
to extract such vertical motions, we compute a log polar 
spectrum composed of 15 orientations in order to detect 
motion orientation with 12° precision. Figure 4 presents 
an example of eye motion analysis: the same eye with 
two different motions is presented. In the first case the 
eye is closing (eyelid vertical motion) and in the second 
case  the iris is rotating (i.e. focusing elsewhere). On fig-
ure 4, the cumulated energy per orientation curves are 
drawn. We can see that eye blinks (i.e. eye closing) report 
a maximum of energy at the 90° direction (vertical motion) 
which is not the case when the iris is horizontally moving. 

�������������������

��� ����

��
��

��
��

��
�

���

����
�����������

���������� �����������������������������������������

��� ����

��
��

��
��

��
�

���

����
�����������

��������������������������������������������������������������
� ������������������������������������������������������������

���������

�������������� ���������� ������������������
�������������������

�����������������������

���

���

�� ���

���

�

�
���

�� ���

Note that the precision of the estimated orientation axis is 
influenced by the angle resolution of the log polar transfor-
mation and by the characteristics of the observed object. 
There is a higher precision if contours oriented perpendicu-
lar to the motion direction exist. This is the case with eye 
blink and mouth yawning.

III. Detection of blinking or yawning. 

 Here, we suppose that we are able to build a 
bounding box around each eye and around the mouth. The 
automatic extraction of such bounding boxes is under the 
scope of this paper. The detection of blinking and yawning 
is a difficult problem because the associated motions are 
non rigid and they can be of very different amplitude.   
 We focus on the total energy E(t), at time t, of the 
spectrum at the IPL output. Figure 5-a shows the temporal 
evolution of the total  energy E(t) for a video sequence  in 
which several eye blinkings are occurring. On that curve, 
each  maximum  is associated to a motion event and each 
minimum to a motion stop. But this example shows that 
the energy drops have not the same amplitude  This repre-
sents a difficulty for the development of a motion detector 
able to detect all the eye blinks. We propose to use an adap-
tive motion detector.

III.1 Noise level estimation

 Motion being related to the presence of energy at 
the IPL output, we have first to cope with residual noise, in 
order to avoid false motion detection. The spectrum noise 

level Enoise is computed at the beginning of the video se-
quence: it is the mean of the residual noise level of the n 
first frames (currently n=20) in which no motion occurs 
(the noise level estimation is computed for the region of 
interest only i.e. eye region or mouth region).
 We consider that the current energy E(t) at the 
output of the IPL is related to a motion event of eye or 
mouth if E(t)>3*Enoise. This criteria is not restrictive be-
cause even for slow motions, related energies are more 
than 10 times the noise level even in noisy conditions. For 
example, in figure 5 each motion maximum reports an en-
ergy above 10 times the noise level (Enoise=0.05).
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III.2 Motion level indicator

 In order to detect motion events with precision, it 
is necessary to compare the current motion with the previ-
ous ones and the comparison must be adaptive to avoid 
false detection. Motion events are related to high level of 
energy at the output of the IPL but the absolute value of this 
high level is unknown and depends on lightning, contrast, 
contours sharpness... Since it is not possible to defined a 
unique threshold on the energy value, we propose to define 
a motion reliability marker called α1(t).
 First, an adaptive indicator E1(t) is introduced, it 
can be seen as the output of an electric analog/continuous 
current converter applied to the total energy time evolu-
tion. E1(t) reaches each maximum energy value and de-
creases temporally with an 1/t curve tendency (capacity 
effect). Figure 5-a illustrates this effect. When a maximum 
of energy is present,  the indicator E1(t) reaches this maxi-
mum and decreases slowly as an electric analog/continu-
ous current converter with low pass filter does.
 This indicator E1(t) is used to estimate the reli-
ability of each current energy level (associated to the cur-



rent motion event) w.r.t. the last energy levels (associated 
to the previous motion events). Currently, the temporal in-
tegration is done on 0.5 second before the current event. 
We define the motion level indicator as :

α1(t) = E(t)2/E1(t)2

α1(t)=1 when the current energy is high compared to the 
last energy values and α1(t)=0 when the current energy 
level is lower than the last energy values i.e. the last mo-
tions amplitude. α1(t) indicates the reliability level of the 
amplitude of the current motion compared to the very last 
motion events. On figure 5-b, the graph shows the tem-
poral evolution of the motion reliability marker α1. It is 
minimum when no motion occurs, maximum when motion 
increases and decreases when motion slows down. The 
main advantage of this motion level indicator is that α1(t) 
values are only in the range [0; 1] so that thresholding is 
easy. A threshold level of 0.2 allows to detect all significant  
motion events associated to  low or fast motions. The risk 
of false detections introduced by the noise level is mini-
mized while only considering the values of the total energy 
spectrum which are above 3*Enoise.
This motion reliability marker is well suited for eye blinks 
and mouth yawnings detection. Indeed, when such mo-
tion events are occurring, the indicator α1(t) is above the 
threshold 0.2. Tests shows that with this marker, it is pos-
sible to detect more than 98% of such movements even in 
poor lighting conditions. False detections are only caused 
by the residual spatiotemporal noise. This occurs when the 
lightning is so low that contours extraction is impossible. 
Then, very fast motions such as eye blinks are detected 
even if the video acquisition system is too slow in regard 
of the eyelid motion (18 frames per second are sufficient). 
This detection could not be acheived with common optical 
flow algorithm [12] because of their hypothesis of low mo-
tion between frames.

IV. Eye and mouth state detection

IV.1 Closed or open state: High or Low output 
OPL filter energy

 The goal is to detect the open or closed state of 
eyes or mouth. The states to be estimated can be consid-
ered as binary states. Taking advantage of the prefiltering,  
we propose an algorithm which is focusing on the total 
spectrum energy at the OPL filter output:  the spectrum of 
the OPL output reports a level of energy which is propor-
tional to the ”quantity” of contours present in the scene. 
As a consequence, the spectrum energy in case of an open 
eye is always higher than those obtained in case of a closed 
eye. This is also the case for an open mouth. Figure 6 pres-
ents an example of the output of the OPL filter with the 
associated level of energy for each different case. In the 
remaining of the paper, the energy level corresponding to 

an open feature is called HighEnergyLevel and the energy 
level corresponding to a closed feature is called LowEner-
gyLevel.
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Note that  intermediate positions such as eyes half open, 
mouth nearly open ...  present an intermediate  energy lev-
el. 
 Closed feature is always related to a very low en-
ergy. As far as open feature is concerned, the associated en-
ergy is higher but the absolute value depends on the open-
ing degree of the feature, and, the value of the energy for 
each state is different from one person to another. As a con-
sequence, it is necessary to learn and to temporally update 
the energy value associated to each state. These updates can 
be done at each eye blinking or mouth yawning i.e. when 
motion events occurs.
 The advantage of such a method is that we focus 
on energy quantity rather than facial features states (i.e. 
position of the eyelip for example). Then, if the bounding 
boxe around the eye or mouth area is not correctly adjust-
ed, detection errors will be minimum even if the region of 
interest (eye/mouth area) is hiden up to 50%. Indeed, the 
detected part of the eye or mouth will give the same energy 
evolution tendancy as the full detected feature in the case of 
optimal bounding box adjustment. This require an adapta-
tive algorithm able to cope with this kind of detection error 
cases.

IV.2 Adaptive computation and updating of High-
EnergyLevel and LowEnergyLevel

 Our idea is to combine the updating of the differ-
ent levels of energy associated to each open or closed state 
with the detection of the motion events (blinking or yawn-
ing) occurring on the considered facial feature. When such 
an event is occurring, it is associated to a change in the state 
of the facial feature. For example, an eye blink is related 
to the successive transitions open/closed/open.   When a 
movement event occurs, the OPL energy level in the frame 
before the motion event is computed and compared to the 
OPL energy level in the frame occurring just after the mo-
tion event. Both reference energy levels (HighEnergyLevel 



and LowEnergyLevel) are then updated.
 In order to have a robust updating of both energy 
levels, the updating process is triggered when the event in-
dicator α1(t) is close to 1 and when the direction of the de-
tected motion event is vertical: blinking and yawning both 
involve vertical motion. So we can cope with iris motion or 
mouth motion occurring when someone is speaking. The 
data fusion algorithm works as follow :

% HighEnergyLevel and LowEnergyLevel updating 
method
If a motion event associated to vertical direction is detect-
ed (α1(t)>0.2 and vertical motion)
Then   compute HighEnergyLevel and LowEnergyLevel
end
% Face feature state detection method
EnergyMean = (HighEnergyLevel + LowEnergyLevel)/2
if E(t) > EnergyMean
then feature state = ‘open’ 
else  feature state = ‘closed’; 
end

V. Results

V.1 Eye state and blinking detection

 The presented algorithm is applied to a video se-
quence of eye blinks.
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figure 7 : Temporal evolution of the OPL energy on an eye blink sequence
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On figure 7, motions blinks are detected: they are related 
to α1(t)>0.2  with vertical motion direction and they cor-
responds to eye openings or closings. A short initialization 
step is required in order to adjust the HighEnergyLevel 
and LowEnergyLevel to the acquisition conditions. This 
is done from the first frame to frame 100 in which the eye 
stays successively in open and closed state more than 0.5 
second. During this period, the algorithm computes and 
updates both levels with the energy of the states encoun-
tered before and after a blinking event. During non volun-
tary eye blinks period (from frame 300 to frame 600) the 
LowEnergyLevel is not updated because of the shortness 
of the blinks. The algorithm uses the previous low energy 

level computed during long period closed eye, so that de-
tection remains reliable. This updating method can cope 
with very short blinks (shorter than the acquisition camera 
frame rate) and can avoid a non suitable updating of the 
LowEnergyLevel.  Both energy levels are correctly com-
puted and since we consider the eye as closed if the current 
OPL energy E(t) is lower than EnergyMean, the algorithm  
achieves 100% success of eye state/blinks  detection from 
frame 100 to the end of the sequence.
 The blink frequency is linked to the frequency of 
the maximum values of α1(t). An eye is closed each time 
the current energy is close to the LowEnergyLevel so that 
the duration of an eye closing can be evaluated. Blinking 
frequency and eye closing duration are information about 
the state of human vigilance. 
 Several tests show that  the LowEnergyLevel val-
ue does not change more than 10% from frame to frame. 
On the contrary, the HighEnergyLevel value evolves as the 
eye is open differently (from fully open up to frame 300 
and less open after frame 300 in the case of the sequence 
of figure 7). This confirms the necessity of an  adaptive 
algorithm.
Note that other motions such as translation and small rota-
tions of eye due to focusing direction changes are not dis-
turbing because these perturbations are related to motion 
which are smaller than the blinking motion and the energy 
level at the OPL output is proportional to the motion ampli-
tude. Contours with small motion do not create sufficient 
energy changes compared to eye blinking motion. More-
over, focusing direction changes only translate the pupilly, 
but the quantity of contours does not change as much as 
in the case of eye blinks, and the motion direction of the 
pupilly should be vertical to generate false detection.

V.2 Mouth state and yawning detection

 The same method is applied to mouth yawning de-
tection. Figure 8 shows the results on a sequence in which the 
mouth  exaggerates its open and closed state from frame 1 to 
frame 300, is closed from frame 301 to frame 500, and  opens 
/ closes normally  after frame 500 because of natural speech.
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figure 8 : Temporal evolution of the OPL energy on a mouth motion sequence
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We can see that the algorithm self adjusts its parameters 
HighEnergyLevel and LowEnergyLevel before frame 200, 
this is the initialization period where each mouth state is 
performed more than 0.5 second by the user in order to 
correctly initialize these parameters. Then the algorithm 
updates them with respect to the evolution of the OPL 
output spectral energy. The LowEnergyLevel corresponds 
to closed mouth because the closed lips generate a lower 
quantity of contours. The HighEnergyLevel corresponds to 
open mouth  which let appear tooth and/or internal mouth 
details or a black area that generate high energy contours 
with the lips frontier.
 Note that during the stable open/closed mouth pe-
riods, the HighEnergyLevel  and LowEnergyLevel values 
are adjusted and when the speech periods happen (from 
frame 500 to the end), these levels are no more or few up-
dated. This allows the correct detection of the mouth state 
even in case of fast mouth shape variation that occurs dur-
ing speaking.

VI. PERFORMANCES AND APPLICATION 

 The performances of this facial feature state and 
motion event detector have been evaluated in various test 
condition : it detects states and movements events up to 
99% success in standard office lighting conditions with the 
focused object occupying from 60% to 100% of the cap-
tured frame (currently 100*100 pixels). In low light con-
ditions or noisy captured frames (Gaussian white noise of 
variance 0.04), the algorithm is able to detect the motion 
events and states with 80% success. Moreover, even if the 
algorithm is ‘lost’ at a moment, since it is adaptive, it auto-
matically corrects its energy levels and works fine when the 
sequence returns to normal conditions.
 The algorithm works in real time, reaching up to 
80 frames per second on a standard PC desktop Pentium 
4 running at 3.0Ghz on which a webcam is installed. The 
algorithm automatically adjusts its parameters during the 
analysis. This proposed approach is inspired from the ca-
pacities of the human visual system which is adaptive and 
is able to cope with various illumination and motion condi-
tions. 

VII. Conclusion

 A real time method for facial feature state and mo-
tion events detection has been proposed, it works with eye 
and mouth in the same way. The algorithm inspired from 
the biological model of the human visual system shows its 
efficiency in terms of motion detection and analysis : the 
use of the retina filter prepares the data and yields to a spec-
trum easy to analyze. 
 The proposed algorithm proves its efficiency to 
estimate the open or closed state of eye and mouth and the 

frequency of blinking and yawning. This is well suited for 
the analysis of a user vigilance. The performances of the al-
gorithm on video sequences of a car driver are under study. 
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