Le bâillement, du réflexe à la pathologie
Le bâillement : de l'éthologie à la médecine clinique
Le bâillement : phylogenèse, éthologie, nosogénie
 Le bâillement : un comportement universel
La parakinésie brachiale oscitante
Yawning: its cycle, its role
Warum gähnen wir ?
 
Fetal yawning assessed by 3D and 4D sonography
Le bâillement foetal
Le bâillement, du réflexe à la pathologie
Le bâillement : de l'éthologie à la médecine clinique
Le bâillement : phylogenèse, éthologie, nosogénie
 Le bâillement : un comportement universel
La parakinésie brachiale oscitante
Yawning: its cycle, its role
Warum gähnen wir ?
 
Fetal yawning assessed by 3D and 4D sonography
Le bâillement foetal
http://www.baillement.com

mystery of yawning 

 

 

 

 

mise à jour du
28 décembre 2019
Frontiers in Neurology
2019;10:1275
Caffeine and Primary (Migraine) Headaches
Karl B. Alstadhaug, Anna P. Andreou
 
Nordland Hospital Trust, Bodø, Norway

Chat-logomini

 
INTRODUCTION
It is well-know that caffeine can stimulate wakefulness, increase concentration and decrease the sensation of fatigue, but how does it affect one of the most common human agonies, headaches? Caffeine is commonly used as analgesic adjuvant for the acute treatment of pain. However, despite the flattering description of the efficacy above, the general analgesic effect of caffeine seems at best modest. Besides, chronic consumption of it may have a flip side, withdrawal may cause caffeine withdrawal, a syndrome including symptoms such as drowsiness, headache, mood-changes, difficulty focusing, nausea and muscle pain/stiffness. Even small amounts of caffeine have been shown to suppress this. Headache can occur independently of the other symptoms, and Caffeine-withdrawal headache, properly described in the 1940s, is recognized as an own diagnostic entity by the International Classification of Headache Disorders (ICHD-3). Results from both experimental and clinical studies indicate a high rate of caffeine withdrawal in the modern society, that may even be underestimated. The real world extent and clinical (physiological and psychological) importance are not well-known. The dual effects of caffeine in headaches, relieving on one side and triggering on the other side, make caffeine a very interesting substance in headache pathophysiology research. Still, the prevailing theory of the withdrawal headache is basically a rebound vasodilation due to caffeine's vasoconstrictive effect, at large a too simplistic theory that is not in conformity with modern views of headache pathophysiology. The caffeine withdrawal syndrome, which includes symptoms suggestive of the prodromal phase of migraine, is hardly of peripheral origin. Based on the current established knowledge on migraine pathophysiology, this narrative review aims to explore how caffeine, which has profound biological effect as an adenosine receptor antagonist, may influence pathways involved in headaches, with a particular focus in migraine.
 
 
Yawning Indicates Hypothalamic Alterations
It has been demonstrated that activating the A1R on TMN- neurons increases NREM sleep (146), and that blocking them on hypocretinergic neurons of the lateral hypothalamus increases wakefulness (147). Both neurotransmitter systems have been suggested to play an important role in migraine (148, 149). The TMN of the posterior hypothalamus has been suggested to play a role in the initial phases of a migraine attack and to be responsible for the morning occurring migraine attacks (148, 150). During drowsiness and normal recovery sleep the firing from the histaminergic neurons are reduced or absent, but during wakening and arousal they fire, allegedly the most wake-selective firing pattern identified to date (151). Adenosine may well have a protective effect against migraine during sleep, but during non-recovery sleep and wakefulness disrupted homeostasis may cause increased histaminergic firing predisposing for headaches. It has been postulated that yawning is the manifestation of a switch in brain states from "default mode" to an "attentional mode" by increasing clearance of adenosine (152). It remains to be proven in experimental models that increased histaminergic firing sensitizes the TCC.
 
Yawning may also be indicative of an individual's inability to properly maintain thermal brain homeostasis (153). If yawning occurs without being associated with tiredness, it may perhaps indicate a thermoregulatory dysfunction. In the study of Schoonman et al. of the premonitory symptoms of migraine there was no correlation between "sleep problems" and yawning (Spearman's rank correlation of 0.024) (65). Further, Jacome described 3 migraineurs with compulsive yawning as a prodromal symptom, independent of fatigue and drowsiness (154). In a recent cross-sectional study, 45.4% of 339 migraineurs reported repetitive yawning during migraine attacks (155). Sleepiness was significantly more often reported in patients with yawning compared to those who did not yawn during their migraine attacks.
 
Thermoregulation and sleep are interrelated. It is well-known that yawning has a clear circadian pattern parallel to the rise in body and brain temperature, normally occurring most often before sleep onset and after waking (153). A hypothesis that migraine attacks serve to restore the brain temperature has recently been put forward (156). In general, the neurons of the brain are very sensitive to variations in the temperature (157). Short visual stimulation of the rat invokes a rise in temperature over the visual cortex (158), and during prolonged (4 min) visual stimulation in man, an increase in regional cerebral blood flow caused an average decrease in temperature by 0.2_C (159). Histamine has been shown to mainly excite heat-sensitive neurons in the anterior hypothalamus, causing hypothermia. In contrast to adenosine (160), caffeine increase body temperature parallel to arousal during circadian misalignment in humans (161). Injecting neuropeptide orexin-A into the rat PVN elicits a cortical arousal response followed by yawning (162), and injecting it into the ventromedial hypothalamus it induces hyperthermic reactions (163).
 
Based on the fact that migraineurs show a lower threshold for central dopamine receptor activation than normal subjects (164), and that exogenously administered dopamine receptor agonists may produce some symptoms experienced in the prodromal phase of migraine such as drowsiness and yawning, dopamine may play an important role in migraine pathophysiology. This theory is consistent with the idea that caffeine withdrawal symptoms are due to increased sensitivity of adenosine, causing increased drowsiness (due to increased disinhibition of VLPO sleep-active neurons reducing histaminergic tone) and excessive yawning due to increased dopaminergic tone. It has been shown that injecting dopamine (D2) agonists into the paraventricular nucleus of the hypothalamus (PVN) of rats, increases local nitric oxide (NO) production and thereby activates central oxytocinergic neurotransmission, inducing yawning (165). However, microinjection of other substances into the PVN, such as histamine (166) and nitroglycerine (167) also induces yawning. As distinct from dopamine agonists, that seldom induces headache (168), both donors of NO and histamine are established triggers in pharmacological models of migraine (116). Glyceryl trinitrate has even been shown to both induce prodromal symptoms of migraine (169) and activate the hypothalamus (96).
 
 
CONCLUSION
The current opinion is that caffeine both can relieve and trigger headaches. It has to be clarified whether caffeine withdrawal triggers or merely resembles the migraine syndrome. The nature of the caffeine withdrawal syndrome needs to be better understood. In assessing the clinical effects of caffeine withdrawal, there is a chance that a triggered migraine syndrome is interpreted as part of the caffeine withdrawal syndrome, explaining an overlap between these two. If it triggers migraine it.